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Extraction of the normal component of the
particle velocity from marine pressure data

Lasse Amundsen*, Bruce G. Secrestt, and Berge Arntsen*

ABSTRACT

We present a general wave theoretical method for
extracting the normal component of the particle veloc-
ity from marine pressure data. A possible use of the
normal component of the particle velocity and the
pressure is the separation of upgoing and downgoing
waves at the receivers. For one special acquisition
geometry, the source wavelet can also be estimated.
The method in principle is exact. No information
about the properties of the elastic earth is required.

When the pressure data are recorded mingle
surface, it is necessary to know the source signatures
if the source array location is above the receiver
surface. If the sources are located below, the signa-
tures need not be known. The locations of the individ-
ual receivers must be specified, and the reflecting

receiver surface is plane and horizontal, the extractipn
process can be performed in the frequency-horizontal
wavenumber domain.
The normal component of the particle velocity can
furthermore be extracted from pressure data recorded
at two surfacesat different depths. In this case the
reflectivity of the sea surface does not come into play;
it is only the medium properties between the two
receiver surfaces that enter the problem. The actpal
depths of the receivers need not be known, only their
relative distances. If the sources are located above the
uppermost receiver surface, the source signatures can
also be estimated.
A simple synthetic data example demonstrates the
extraction of the normal component of the pressyre
from the pressure field recorded along a dipping re-

properties of the sea surface must be known. When the ceiver line below a free surface.

INTRODUCTION receiver array. Their algorithm, which is independerthef

subsurface geology, requires that the receiver depththand

In conventional marine seismacquisitiononly the pres- medium above the receivers be known.
sure wavefield is recorded. However, several seismic pro- In this paper we take advantage of their result and show
cessing algorithms need information about the normal deriv-that from the pressure along an arbitrary surface, we can
ative of the pressuregr the normal component of the extract its normal derivative when we know the source
particle velocity, to extract the optimum information about. wavelets. We also show that the source functions need not
the subsurface from the data. The pressure and its normabe known when the sources are located below the receiver
derivative can, for instance, be used to separate upgoing andurface. An assumption in the derivation is that the reflecting
downgoing waves, and for certain acquisition geometries topropertiesof the air/watesurfaceare known. A sketch of
estimate the seismic source signatures. The two wavefieldg¢hese two configurations relateid marine acquisitions
are also the boundary conditions necessary for most two-shown in Figures la and Ib.
way acoustic wavefield extrapolation schemes. Furthermore, we show how to extract the normal deriva-

Weglein and Secrest (1990,1992) and Secrest and MacBaintive of the pressure using pressure measurements at two
(1992) have shown that the source wavelets, or the sourcalifferent depth levels (Figure Ic). Such dual streamer data
array radiation pattern, can be estimated from the pressure anthave been used to separate upgoing and downgoing waves
its normal derivative recorded in a marine environment along [Sgnneland et al. (1986), and Monk (1990)]. This process is
an arbitrary surface when the sources are located above thndependent of the reflectivity of the air/water surface.
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Normal Component of Particle Velocity 213

Our method requires no information about the properties solution to the notch problem is to record the normal
of the subsurface. The relationship between the normalcomponent of the particle velocity. This solution was intro-
derivative of the pressure and the pressure itself is derivedduced by Barr and Sanders (1989). When such dual-sensor
from an integral equation for the pressure by using Green’sdata are acquired, our method could be used to verify the
second identity. The normal component of the particle consistency between the pressure and velocity detector
velocity can readily be computed from the normal derivative data.
of the pressure. In the following section we present the theory underlying

In the case that the receiver surface(s) is (are) planer andbur extraction scheme. We then consider the situation with
horizontal, the extraction process may be performed in theone receiver surface and give special attention to the loca-
frequency-horizontal wavenumber domain. The derived tion of the sources. Next, the situation of two independent
equation for sources below a single streamer is consistenineasurements of the pressure is treated. Finally, a numeri-
with the equation given by Filho (1992) when the air/water cal example is given.
surface is free. Assuming cylindrical symmetry, our equa-
tions are consistent with the equations derived by Amundsen THEORY
(1993) In the frequency-space domain the constant-densit

Rigsby et al. (1987) used the bottom-cable technique to . q y-Sp y

. . acoustic wave equation for the pressure fielchused by a

collect pressure data in a shallow water area. One possible . X . L)

o Sequence afn localized point sources at spatial posities
application of our proposed method may be to extract the reads
normal derivative of the pressure from such bottom-cable
pressure data. The normal derivative can then be used t w?
solve the problem of the receiver ghost reflection giving C(V + Y ))P(l‘, Fsq> """ s, 5 @)
multiple notches in the data spectrum. Of course, another cir

= 2 A](u))S(l' - rsj )a (1)
j=1

(a) /Qﬁ—q whereV? is the Laplaciane is the circular frequency, c is
=

the propagation velocity, r is a shorthand notation for the
Cartesian coordinatei4; is the Fourier transform of the
source time function for the source at positt; ) and3(r)
represents a 3-D spatial Dirac delta function. pressure is
recorded in a marine environment at receiver coordirptes
along a surfaceS, below the air/water surfacS, of the
earth. Fomotational conveniencia the followingequations

we drop the dependence of the fields on the source points

rs st . rSm.
(b) We characterize the velocity c(r) in terms of a reference
valuec, and a variation in the index of refractiay

1
e C—g [1-a(r)], (2)

and define the causal Green’s functG,, in the reference
medium by

(V2 + k§)Gy, (r, x') = 3(r — 1'), 3)

(C) ﬂﬁ_i%—' wherek, = w/cy. Substituting equation (2) into (1) we may

write

(V2 + kd)P(r, ) = kia(r)P(r, o)

+ Y Aj(w)d(r - rs; ). (4)
j=1

Fic. 1. Sketches of various configurations of sources andUsing Green’s second identity
receivers pertinent to the theoretical calculations. The stars

represent sources, and the bullets represent receivers. T ) )

extract the normal derivative of the pressure for configura- 7 dr[BV“C - CV°B] = f dSn-[BVC - CVB], 5)
tion (a), the source functions must be known. Configuration Jv s

(b), however, does not need source function information. In . . . , .
configuration (c), the normal derivative of the pressure is whereB and C are two twice differentiabtalar fields in a
extracted from dual streamer data. volume V' bounded by a closed surface S with outward
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pointing normal vecton, an integral equation fd? can be uniformly for all directionst = r'/|r’'|. We demand that the

derived. Settingd = P and C =G, , we get reference medium agrees with the actual medium above the
receiver surface S,, so that the reference medium contains

, , g , _ ,  2e the air/water surface. Hence, the reference medium consists

J:, dr’ [P(r', @)V""Grq (r', 1) = G (', VP, )] of two homogeneous halfspaces: one with air and one with

water. The Green's function,; propagating in the spatially
variant reference medium, takes into account the reflectivity
= I dS n: [P(r', 0)V'Gy, (r', 1) properties of the air/water surfa$,. When the air/water
s surface is free, the Green’s function is zero §,. In
Appendix A we give the frequency-wavenumber expansion

= Gy (r', )V'P(r', )], (6) of the Green’s function wheS, is horizontal.
where V' operates on the 1’ coordinates. Using equations (3) Now, choos_lng the source point r .Of the G.reen S fP”C“O”
; ; ; belows,, the first term in the volume integral in equation (9)
and (4) in equatio(6), i.e., " - L . ;
vanishes. Sinca has no support insidé, the third term in
V'szO (r',r) = _kgGkO (r',r)+ 8 -r), (7) the volume integral is also zero. Setting r'ri=in the

remaining surface integral, equation (9) becomes
V'2P(r', o) = —kEP(r', ) + k2a(r')P(r', »)

m 2 Aj(w) | dr’ Gy (¢, £)d(r' = rs;)
+ 2 AR -rg), ®) 7 v
j=1
we find the general equation =- L dS, - [P(r,, ©)V, Gy (r,, 1)
f dr' [P(r', 0)3(r' — 1) — Gy, (r', 1) = G, (rp, 1)V,P(r;, 0)], (12)
v

whereV, operates on thf, coordinates.

m Equation (12) constitutes a functional relationship be-
X > Aj(w)d(r' =) - Gy, (', rkia(r)P(r', )] tween the pressure field and its normal derivativss, n.e.,
j=1 ! the fields cannot be prescribed independently. The influence

of possible sources below S,, as well as the properties of the

, , . medium outside S, are implicitly expressed in terms of the

= f dS m - [P(r', @)V'Gyy (r', 1) fields P andn | V,.P ons§,. In the following subsections we
S will use this functional relationship to extract the normal

— Gy, (r', DV'P(r', w)]. 9) Eﬁ(rjl\\llv?]nve of the pressure S, when the pressure field is

We have not yet specified the volu’eenclosed by S. In
the following we will use two different geometries to extract
the normal derivative of the pressure, first from single
streamer pressure data and then from dual streamer pressure
data.

The normal component of the particle velo®,,, follows
from the equation of motion as

l
Vo=-—n-VP, (10)

pw

wherep is the density.

SINGLE STREAMER DATA

Consider the geometry drawn in Figure 2. Let the closed
surface S be composed of the recording sur§,cand a
hemispherical ca)Sg of radiusR = |r'|, that is, S =S, +
Sgr . The air/water surfacS§, is insideV, and aboves,.
Letting R go to infinity, Sg approaches an infinite hemi-
spherical shell, and its contribution to the surface integral in
equation (9) becomes zero because of the Sommerfeld radir,; 2 Model geometry for sinale streamer data: S =
ation condition (Sommerfeld, 1954). The fieP(r’, w) fuffills Sg, Where S, 2 the receiver sgurfaCf.S’0 is the air/%ater
the radiation condition oSy since surface. The source point r of the Green’s function and the

scattering regiorw is located below S,. In the textwo
R[i - V'P(r', w) — ikgP(r', ®)] >0, R —> oo, (11) source locationgre considered: either abowa belows,.
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Sources above the receiver surface

[ as 0G0 0P 0
We let the sources be above the receiver suSdeside Sr
the volume under consideration. Then equation (12) be-
comes

f dS, n- P(r,, ®)V,Gy, (r,, 1) (15)
Sr

for the normal derivative of the pressure. Note that in this
case the source wavele4; need not be known to extract
the normal derivative of the pressure. The locations of the
individual receivers must, however, be specified.

Y Aj(@)Gi (xs; , ¥)
j=1

- J ds, n-[P(r,, ®)V,Gy, (r,, 1) Wavenumber domain extraction of V
s,
For simplicity, in the rest of this section we will assume
that the air/water surfacS, is plane and horizontal, with

_ . vanishing pressure, implying that the reflection coefficient is
Equation (13) has been used by Weglein and Secrest (1990, 1. In the case that the receiver array is also plane and

1992) for wavelet estimation. Equation (13) can, however, be horizontal, equations (14) and (15) can be transformed to the
rearranged into a Fredholm integral equation of the first kind horizontal wavenumber domain for finding the vertical com-

- Gko (r,, 1)V, P(r,, (1))] (13)

for the normal derivative of the pressure,

j dS, 1 Gyy (t,, DV, P(r,, 0)
s

M 3

= 3 A4;(@)Giy (rs;, 1)
j=1

j
+ f dS, n-P(r,, 0)V, Gy, (x,, 1), (14)
Sr

where the right-hand side contains only known fields if the

source wavelets are known. Note that the Green’s functions

in principle can be evaluated with any source point r located
below the receiver surface. The reader is referred to Tricomi
(1957) or Antia (1991) for a discussion of numerical solution

techniques (such as quadrature or expansion methods) for

Fredholm integral equations of the first kind. Such integral
equations are, in general, ill-conditioned and their accurate
solution may be difficult to obtain. In quadrature schemes,
the integral is approximated by a quadrature formula, and
the resulting system of algebraic equations is solved. In
expansion methods, the solution is approximated by an

ponent of the particle velocity, ;V In Appendix A [see
equation (A-lo)],we show that the 3-D version of equation
(14), which is valid when the source locatizys= (x; , V.., .
zg),j=1,...,m, are above the receiver debth lez,,l
becomes

Vo (ky, kya Z,, ®)

i
- [CXP (_ikzzr) — €Xp (ikzzr)]_l
)

m
X E Aj(w) X €xXp (_ikxxsj - iknyj)
j=1

x [exp (-ik,z,,) — exp (ik;z,, )1)

|

XP(kx’ ky’ Zrs (1)),

where k,, k, and k, are the two horizontal and vertical
wavenumbers, respectively.

k,

pw

exp (—ik,z,) + exp (ik,z,)

exp (-ikzzr) — exp (ikzzr)

expansion in terms of some convenient basis functions. The Wwhen the source deptiz;,j =1, ... ,m, are below the

coefficients of expansion may be determined by minimizing
some error norm.

For most marine acquisition geometries, however, we
may assume that the receiver surface is plane and horizonta
The integral equation (14) then can be transformed to the
wavenumber domain where it is easier to handle. This
solution technique is discussed below.

Also note that the locations of the sources and the
individual receivers must be known to solve equation (14).

Sources below the receiver surface

When the sources are located belowrgeordingsurface,
equation (12) gives the following integradjuation

receiver depth leve,, equation (15) gives the following

relation
(17)

between Y andP. No knowledge of the source wavelets is
required.

In Appendix A we also interpret equations (16) and (17) in
terms of ghost operators and direct and reflected parts of the
pressure.

Equations (16) and (17) have been derived by Amundsen
(1993) assuming cylindrical symmetry. Equation (17) has

kz

pw

exp (—ik,z,) + exp (ik,z,)

II/ kx, k s Lrs ==
2 by 2 @) exp (—ik.z,) — exp (ik.z,)

X P(ky, kya zp, 0),
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earlier been derived by Filho (1992) who introduced differ-

ential equations for upgoing and downgoing waves. Filho j dSz n -+ Gy, (ry, 1)V P(ry, 0)
(1992) also demonstrated the applicability of the extraction Js;

method both on synthetic and real data.

Finally, note that the wavenumber domain extraction - dSs n+ P(ry, )V,G, ( )
algorithms forV, are independent of the source point r of s 2 2> @)V2 kg (M2, ¥
the Green’s function which enters equations (14) and (15). 2
DUAL STREAMER DATA + J— dSin- P(r;, 0)ViGy, (r1,r).  (19)
S1

In this section, we show how to obtain the normal deriv- ] . . ]
ative of the pressure by measuring the pressure field at twolhe right-hand side contains only known fields. In the
depths. We assume that neither the sources nor any of thélerivation of equation (19) we have not made any assump-
scattering body is located between two receiver suri§ses tion on the air/water surface. This equation is therefore

and §, of infinite extension. LettingS; be aboves,, and independent of the properties of the reflecting sea surface.
bringing the source point r of the Green’s function be$w An equation for the normal derivative of the pressure at
(Figure3), equation (9) becomes the receiver surface;&an be derived from equation (18) by

choosing the Green’s function zero oxn Bthen is conve-

nient to locate the source point r of the Green'’s function
f dS 1+ [P(ry, 0)V3Gyy (12, 7) Zbove &
52 Note that the measured pressure and the extracted normal
— Gy (2 DV,P(r;, 0)] (18) derivative of the pressure from dual streamer data can be

used to estimate the source signatures by the method of
Weglein and Secrest (1990) when the source array is located
= - I dS; n-[P(r;, ®)V1Gy, (ry, 1) above the dual receiver array.
S1

Wavenumberdomainextraction of ¥,

= G (r1, V1 Py, 0)]- For practical purposes, the receiver arrays would be

Equation (18) constitutes a functional relationship between assumed to be horizontal. For this case equation (19) can be

the pressure field and its normal derivative on §;= S,. transformed to the horizontal wavenumber domain for find-
We now demonstrate how to find the normal derivative of ing Vz. In Appendix B [see equation (B-6)], we show that the
the pressure at the lowermost receiver surfS,2To equation in 3-D becomes

eliminate the unknown contribution from the normal deriv-
ative of the pressure at the receiver surfagg 8 choose
the Green’s functioiG,, zero on this surface. Equation (18) .
then becomes an integral equation for the normal derivative = — [exp (~ik;Az) — exp (ik,Az)] !
of the pressure at the receiver surfs, pw

Vo (kx, ky, z3, ®)

X {2P(ky, ky, z1, w) — [exp (—ik,Az)

+ exp (ik, Az)]P(kyx, ky, z;, o)}, (20)

whereAz = z, — z; > 0 is the relative distance between the
receiver arrays. Note that the actual streamer dezjtaad

L /\__81/— _ z, need not necessarily be known; it is the relative distance
Az that enters equation (20). This equation has earlier
implicitly been used by Sonneland et al. (1986) and Amund-

__/\_/'"— sen (1993) to find the upgoing waves from dual streamer

S pressure data. The equation for the upgoing wave compo-
2 nents is given in Appendix B, equation (B-8).
Finally, note that the wavenumber domain extraction
. r algorithm forV, is independent of the source point r of the
Green'’s function which enters equation (19).

NUMERICAL EXAMPLE

So

In the numerical experiment we use a 2-D synthetic data
set to test and investigate the performance of the spatial
filtering process described by the Fredholm integral equation

FiG. 3. Model geometry for dual streamer data: §,=t

S where S. and S. are the receiver surfaces . is the (14) of first kind for one sourcém = 1) located above a
) ) . o e ne . :
alrlwater surtace. The source Point r of the Green's function 9iPPINg receiver line. In Appendix C we approximate the

and the scattering regia1are located belows,. The integral by a simple quadrature formula. The discretized

sources are assumed to be located either aS pwee below version of the integral equation is given in Appendix C,
S,.
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equation (C-4). The corresponding matrix equation of the eigenvalues with very small magnitudes in the maK.x

form Kf = g is defined in equation (C-5). leading to an ill-conditioned system of equations. It is well
We choose a very simple model, a homogeneous mediumknown that quadrature methods are not well suited for

bounded by a free surface. In this case the normal derivativesolving Fredholm equations of the first kind. Several syn-

of the pressure can be calculated from analytical expressionghetic data tests have, however, shown that the extraction

in the frequency domain; thus, we have the possibility of algorithm outlined in Appendix C gives acceptable results

checking the extracted normal derivative with the true when the source points of the Green's function are chosen

normal derivative. relatively close to the pressure receiver points. Prudent
The source is located at the horizontal coordinate 0 choices are found to be in the range from 2-25 m.

m at a deptle; = 5 m (Figure 4). Its frequency content is

approximately 60 Hz. The receiver line has a quite large dip

angle,& = 30 degrees, relative to the free surface. The offset (m)

number of receivers ibl, = 201, with the first receiver at

position (433 m, 25 m) and the last receiver at position

2
R

receiver line, located 2.5 m below. The number of evaluation
points in the example &, = N,, which means that we
E
fz/.‘// lm
[ll T

-433.0 0.0 433.0

have an even-determined problem.

The reference data (modeled pressure data) in the numer-
ical experiment are shown in Figure 5a This pressure record
is transformed to the frequency domain, and processed by
the algorithm developed on the basis of equation (C-4). The ~

T . . 2]
building block of the process is a subroutine that solves a~~
complex system of linear equations. The output of the ¢
process is the extracted normal derivative of the reference®
pressure recording; this data set is displayed in Figure 5b. To
validate the extraction process, we have modeled the normal
derivative of the pressure, shown in Figure 5c, from analyt-
ical expressions. Figure 5d shows the difference of the
modeled and the extracted normal pressure derivative. The
difference is very small, showing that the extraction process
has worked satisfactorily. ~

We have, however, observed numerical instabilities of the <~
extraction process for some choices of the evaluation points £
r = (x, ). Choosing the depth coordinaiz®o far from the *
receiver line turns out to give an inaccurate solution with
numerical artifacts. This inaccuracy is related to several

i

I"||||lllu. ity N

time (s)

-433.0 0.0 433.0

FiG. 4. Model geometry in numerical example. The star (*) offset (m)
denotes the source position. The solid line with dip a¢gle

= 30 degrees represents the receiver line where the solidfic. 5. (a Reference pressure data. ﬁb) Extracted normal
dots(-) denote receiver positions. The source points of the pressure derivative. (c) Modeled normal pressure derivative.
Green's function are located along the dashed line with (d) Difference between modeled and extracted normal pres-
triangle symbolyA). sure derivative.
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CONCLUSIONS a patent on the use of vertical gradient estimation to separate

downgoing seismic wavefields (Corrigan et al., 1991).

We have derived a general wave theoretical method for

extracting the normal component of the particle velocity
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APPENDIX A
WAVENUMBER DOMAIN EXTRACTION OF V, FROM SINGLE STREAMER PRESSURE DATA
We define the 2-D spatial Fourier transform as below the horizontal air/water surface at dezgh= 0. We
assume that the air/water surface is a free surface with
© (o vanishing pressure, which implies a reflection coefficient of
Flees ) —I—w j—m or by -1. We setry = (x5, V,., 25)> T = (X5 ¥p5 2,), T =

(x> v» ), and let the depth axis be positive downwards with
X exp (—ikyx, — ik,y,) f(xX,, y,) (A-1) { >z >z, >0. The 3-D Green's functioGy, of the
reference medium consisting of a water halfspace below the
free surface then has the wavenumber expansion (Morse and
Feshbach, 1953; Weglein and Secrest, 1990)

1 ® ©
GkO (l'r, l') = (—27)2 J J dkx dky

with inverse

1 w [
f(xrs yr) = (211_)2 j_w J:w dk, dky

x exp (ikyx, + ikyy,)F(ky , ky ), (A-2)

where k, and k,, are the horizontal wavenumbers corre- x exp [tky(x —x,) + iky (v —y,)]
sponding to the spatial coordinat,sandy,.

In this Appendix we derive the 3-D wavenumber version X (CXP [ikz L = z, |1 - exp [ikz (L + Zr)])
of the integral equations (14) and (15) for the vertical 2ik, ’

component of the particle velocitV’,. The pressure is
recorded on a horizontal receiver surfacdepth z, located (A-3)
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with normal derivative

aGkO (ry, r) 1 © ® dk. dk
9z,  (2m)? f_w f_w x =y

x exp [ik,(x — x,) + iky('y = yr)] % (ik;)

% _Sign (C _zr) €Xp [lkzlg "zr|] — €Xp [’kz(c + Z,.)]
2ik, ’
(A-4)

where the wvertical wavenumbers in the water is

k, = V(w/cg)® — ki — k;, and sign (z) is the signum
function.

Sources above the receiver surface

We assume thatz, > zs, (j=1,...,m).UsingV, - n=
d/dz,, equation (14) may be written

m
3 A;(0)Giy (£, 1) = - f f dx, dy,
j=1 -0 J-x

de() (r,, r)
dz,

X P(rr, (.0) - Gko (l',., l‘)

dP(r,, ®)
dz, )
(A-5)

Inserting the expansions for the Green’s functions in equa-
tion (A-5) we obtain

% ® €X] (lk + ik + ik C
J J‘ dk,, dky p x X s yY 20
—x J - z

X

{VE

Aj(w) €Xp (_ikxij - ikyys]- )[CXP (—ikzzsj-)
J

— eXp (ikzzsj' )]

=J'°° fmdx,dy, {P(r,,w)xfm jwdkxdky

X exp [lkx(x _xr) + iky('y _.Yr)] X (lkz)

(CXP [ikz(c _Zr)] + exp [ikz(g + zr)])
X

2ik,
n j j dk, dk, exp [iks(x —x,) + ik, (y = y,)]
aP(rr, 0-’)
oz, )

(A-6)

% exp [lkz(c _Zr)] — €Xp [lkz(c + Zr)]
2ik,

© o exp [ilkxx + k,y + k; )]
J J s dy, == TR
p——y —00 r4

X
J

M s

Aj(0) exp (—ikxxsj - ikyysj)

1

X [CXP (—ikzzsj) — exXp (ikzzsj' )]

© foo exp [ilkxx + kyy + k;0)]
) f f dh dly = TR
-0 —00 z

X {(ikz)[CXP (_ikzzr)

+ exp (tkzz,)P(ky, ky, 2, ©)
+ [CXP (_ikzzr)

oP(ky, ky’ Zr, ®)
0z, )

~ exp (ik.z,)] (A7)

Equating integrands, we obtain

m

2 Aj(w) €xXp ("ikxxs]- - ikyysj exp (_ikZZSj )
j=1

~ exp (K2, )] = ik;[exp (~iksz,)

+ exp (ik;z,)P(kx, ky, z,, o)

0P (ks , ky, Zr, @)

+ [exp (~ik,z,) — exp (ik,2,)] ~
-

(A8)
Note that this equation is independent of the evaluation
source point (x, y¢) of the Green’s function.

Solving equation (A-8) for the vertical derivative, and
furthermore for the vertical component of the particle veloc-

ity,

i 0P(ky, ky, z,, @)
Vilksr ky» 2py 0) = = — ———
pw 0z,

’ (A-9)
we find

Volky, kya Z,, 0)

i
= — — [exp (—ik,z,) — exp (ik,z,)] !
)

m

z Aj(‘”) €xXp (_ikxxs]- - ikyys]')
j=1

x

Transforming the pressure field and its normal derivative to
the wavenumber domain using equation (A-l) and gathering

common factors, we find x [exp (—ik,zs;) — exp (ik;zs;)]
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k, [exp (~ik,z,) + exp (ik,z,)

pw | €Xp (_ikzzr) — exXp (ikzzr)

X Plky, ky 5 2,5, 0). (A-10)
Introducing the ghost operators
Gailky, ky, 2, ) =1 = exp (2ik,z), (A-11)

and the direct wave contribution P, in the water layer

7 Aj(w)

>

5 2ik;

Pylky, ky, z,, ) = exp (—-ikxxsj - ikyysj)

x exp [ik,(z, — zs; NG - (kyx, ky, Zsi ), (A-12)
equation (A-9) may be written
Vaolks, ky, 2,5 o)

k: 2

pw |G- (kx, kya zr, ®)

Pd(kx’ ky, Zrs (’))

_ G+(kx, ky9 Zrs w)
G_(kx, ky, Z,, w)

Here, G Hz,) and G_ (z,) are receiver ghost operators that
would be experienced by geophones dndirophones,
respectively, and G (z, ) is a source ghost operator. The
total pressureP is the sum of the direct paP,, and the
reflected (scattered) peP,, that is,P = P, + P,. Equation
(A-13) thus can be written

Pky, ky, z,, w)}. (A-13)

k
Volky, ky, zr, 0) = — = [_Pd(kx, ky, Zy, ®)
pw

Amundsen et al.

G+ (kx’ kya Zr, (1))

+ Pk, k
G- (kx, ky: zr, ®) e Y

s Zrs (1)) . (A'14)

Equation (A-14) demonstrates that the pressure receiver
ghost operator must be filtered from the reflected part of the
pressure,P, = P — P,, before the conversion to the
vertical particle velocity component. The direct waves con-
tain source ghosts only, and therefore are transformed by
multiplication with the factok,/pw. The source signatures
must of course be known to compwP,.

Sources below the receiver surface

In this casez, <z, (j =1, . .

. ,m). Equation (15) gives
the following relation’

Z2lkxs ky, 205 @)

pw

k, [exp (—ik,z,) + exp (ik,z,)
z( p (—ik.z, p (ik.z, Plhe, Ky, 21, )

exp (_ikzzr) — €xXp (ik;z,)
(A-15)

betweenV, and P. In terms of receiver ghost operators

equation (A-15) reads

Viky, kys Z,, ®)

k; Gyilky, ky, 2y, ®)
= -2 2R Pk, ky, 2y, @)
pw G- (kyx ky: Zr, ®)

(A-16)

In this case both the reflected part of the pressure and the
direct wave contain a receiver ghost, which gives the simpler
extraction equation (A-16) as compared to equation (A-14).

APPENDIX B

WAVENUMBER DOMAIN EXTRACTION OF v, FROM DUAL STREAMER PRESSURE DATA

In this Appendix we derive the 3-D wavenumber version Gio(Xrs ¥r» 2
of the integral equation (19) for the vertical component of the
particle velocity. The depth axis is positive downwards, and
the pressure is recorded at two horizontal receiver surfaces
at depthsz; and z, with { > z, > z;. Usingn-V, =
—dl/dz, and n' 'V, =d/dz,, equation (19) becomes

a’ l')

T 2w )zf J dky, dky exp [iky(x —x,) + ik, (v = y,)]

exp [ik;|{ — zq4|] — exp [k, ({ + zo — 221)]
© b dP(xr’ Yrs 22, (1)) X 2ik (B-z)
J I dx, dy, Gko(xra Yrs 225 1) d z
o J o Z2
with normal derivative
© -] deO (xr,)’r, 22’ l')
= f dx’ dy" P(x"’y"’zz’ (1)) dz aGkO(xr, Yrs Zas l‘) 1 © ©
~woJ = 2 =— dk, dk,
8zy 2m* ) .. ).
w0 @ i P deO (xr,yr, 21, l')
f_w . r d)’r (xr,yr, Zl, 0.)) d21 . x exp [lkx(x _xr) + lky('y _yr)] x (lkz)
(B-1) _ )
In this case the 3-D Green’s functiG,,, which is chosen g —sign ({ — za ) exp ik, L — za|] — exp[ik; ({ + 2o — 221)]
zero at the uppermost recording lez7, has the wavenum- 2ik, ’

ber expansion (B-3)



Normal Component of Particle Velocity

where the index a = 1, 2, ard= (x, v, {). Inserting the

221

Note that this equation is independent of the source point

expansions for the Green's functions into equation (B-l), (x, v, {) of the Green’s function.
and Fourier transforming the pressure and its derivative to By use of equation (10) the vertical component of the

the wavenumber domain, equation (B-I) becomes

® ® €X] (lk X
J j dk,, dk, P

X [exp (—ik;z2) — exp (ik;(z2 — 221))]

+ ikyy + ik, ()
2ik,

dP(kx, ky’ 23, ©)
X
d22

® ® exp (tkxx + ik, vy + ik, {)
= J J dk, dk, TR
—00 —00 z

x {2ik, exp (—ik,z1)Pky, ky, 21, ©) — ik,

x [exp (—ik;z2) + exp (ik;(z2 — 221)Plky, ky, 22, @)}

(B-4)
Equating integrands, multiplying by eXik,z;), and intro-
ducing Az = z, — z;, we obtain
dP(kx, ky, 22, ('-))

[exp (—ik,Az) ~ exp (ik, Az)] =

= 2ik,P(ky, ky, 21, w) — ik [exp (—ik,Az)

+ exp (ik,A2))P(ky, ky, 22, ®). (B-5)

particle velocity becomes
k

Vaks, ky, 22, ©) = — [exp (=ik,Az) — exp (ik;A2)] !
pw

X {2P(kxa kys Z1, (‘))
— [exp (-ik,Az)
+ exp (ik,Az)IP(ky, ky, 22, 0)}.

(B-6)

Equation (B-6) may for instance be used to find the
upgoing wavefield at the lower surface. Using

1 .

it immediately follows
U(kx’ ky, 22, (.0)

Plky, ky, 22, ©) — exp (ik;Az)P(ky, ky, z1, ®)
- 1 — exp (2ik,Az) ;

(B-8)

This equation has earlier been derivedSgnneland et al.
(1986) and reviewed by Amundsen (1993).

APPENDIX C
DISCRETIZATION OF INTEGRAL EQUATION (14)

We here consider integral equation (14) in the 2-D case for whered is the local dip angle of the receiver line at the point

one sourcgm = 1) with r =(x, §), r, = (x,, z,), andry,

(x,, z,). Substituting equation (C-l) into equation (14) we

= (x5, zg). The depth axis is positive downward. Assume find

that the receivers are not necessarily flat, but follow the

curve C:x, = X,(s), z, = z,(s), wheres is the distance

along C (see Figure C-l). The normal vector has the com-

ponents
z, dx,
n = (n,, n;) = (—sin ¢, cos ¢) = (—E’ s ), (C-1)
~N
I'r x¢
S
n S
Z

Fic. C-l. The receivers are not necessarily flat, but follow
the curve Cx, = x,(s),z, = z,(s), wheres is the distance
along the curve. The normal vector at the pr,int (x,, z,)
has the components n = é;sd), cos ¢) = (—dz,/ds,
dx,/ds), whereé be the local dip of the line.

is G dP(r,, ®)
lc S Uk (rr, ) on

+j ds P(r,, w)[—
c

aGko (ry, 1) dx,
ds

=A 1 (w)Gko (rsl > l')

aGkO (ry, 1) dz,

ox, ds

+

]- (C-2)

0z,

The simplest technique for solving an integral equation

numerically is by the quadrature method. The use of equi-
distant abscissas and unity weights in the quadrature formula
correspond to replacing the integrals with sums over the
horizontal receiver coordinates, hence,

Nr OP(r,e, A
3 Gy, (rres 1) (rre, w) _ 1(o)

oot on As

Gko (rsl > l‘)
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Ny 3Gy (Fres ¥) dz,e A (o) i
+ z P(rr(, 0.)) - ° g} = AS Gko (xs7 Zss X]> gj) + E P(xre, Zres (1))
o1 0X e ds e=1

0Gry (Xres zre> Xjs &) dzye

aGkO (rre, ) dx,e
' Saicd (©3) x|

0Z,¢ ds 0X g ds

where N, is the number of receiverf,, = (x,¢, z,¢), and

Gy (Xres Zres Xjs &) dxye

As is the receiver spacing. We can now solvedP/on by +
evaluating the Green’s functions N, pointsr; = (x;, {;), 0z ds
where N, = N,, using a least-squares method. Equation . .
(C-3) then becomes g q q For the 2-D case the Green’s functG,,, being zero at
’ the free surface, is
Ny aP(xr€9 Zres (.0)
2 Gko (xrf, Zres Xj» g]) T i o) _ ) N
e=1 Gy (xre,Zre,Xj,Cj)‘—"‘ZHo (kop )+ZH() (kop™),
A1 (o) Nr (C-6)
= Gko(xsaz_w Xj» Cj)+ 2 P(xr{’,zrfy w) . i . i
As e=1 where H{V is the Hankel function of the first kind, order
zero, and
Gy (Xres Zres Xjs §) dzye
1T X e ds p™=V(xj —x,0)% + (§ ~ 27¢)° (C-7)
. Gy (Xres zres Xjs &) dxye (4 pt = V(X —x,6)2 + (§ +2z0¢)%. (C-8)
azrf ds ) ) . . .
The partial derivatives <G, becomes
j=1,..., N..
For a receiver-line with constant dip anw; we have 9Gkq - _ tho(xj = *re) H{ (kgp™)
dz,e/ds = sin ¢ and dx,./ds = cos . X ,e 4p~ 1o
The discretized equation (C-4) can conveniently be written
as a matrix equation iko(Xj — Xre)
q + (% H{Y(kop™) (C9)
Kf=g, (C-5)
Gy iko(l; —
whereK is a matrix with kernel elements L. _(l ol = 2re) H kop™)
0Z,¢ 4p~

Kie = Giy (Xre 5 zres Xj 5 G )s

. . o iko(Lj + zp¢)
and f is the unknown vector containing the normal derivative -\

)H%l><kop+>, (C-10)

T
elements 4
IP(Xres Zre, ®) where we have usedH§" (£)/de = —H{V (§).
=T Note that the Green’s functions are only a function of the

relative horizontal distances. When the receiver surface is
which are to be determined, and g is a known vector with plane and horizonti.e., ¢ = 0), z,¢ = z,, {; = {, andK
elements is a Toeplitz matrix.



